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Abstract-The eigenvalue problem associated with thermal diffusion studies in cyclic multilayered com- 
posites is considered. The transfer matrix of these walls can be made explicit with the help of ChebychetT’s 
polynomials. This general property is exploited in a detailed study of the first group of eigenvalues in order 
to propose a homogenization process for these media. By this way it is possible ta find a homogeneous 
medium which has approximately the same first eigenvalues as the actual multilayered composite. The 
application to a binary composite leads to an interpretation of the time scale of the homogenized medium. 
This example reveals a very good accuracy in the temperature calculations. A corrective term which takes 
into account the tin&e number of the pattern repetitions, when determining the physical characteristics of 

the homogenized wall, is at the origin of that remarkable accuracy. 

1. INTRODUCTION 

AMCNG the numerous methods permitting us to solve 
the thermal diffusion problems in multilayered com- 
posites, the finite integral transform is an interesting 
candidate: it gives the analytical solution through a 
simple development ; it is entirely built up in the physi- 
cal space. Thus it simplifies the physical analysis of 
the phenomenon and it uses few numerical calcu- 
lations. We know that it needs the solution of an 
~~te~e~ary ~tu~-~ouv~e problem ; but provided 
that a reliable technique is used for finding the eigen- 
values, this essential step is led without any difficulty. 

When the number of Iayers of the composite rises, 
the calculation of the spectrum becomes simply more 
lengthy. The achievement of the full solution of the 
thermal problem is thus more lengthy itself and thus 
is more time-consuming. The cyclic repetition of a 
given pattern does not change the nature of the last 
problem, but we must ask ourselves if such a period- 
icity is a source of simplification-notably when the 
number of patterns becomes large a homogenization 
ought to be practicable. 

After a brief quote of the method, we build the 
characteristic equation of a cyctic composite medium. 
We focus then on the first eigenvalues and on the 
search of an approximate homogeneous medium 
which is able to give the same eigenvalue spectrum. 

Throughout the article, a binary copper/glass com- 
posite supports the illustrations. This kind of associ- 
atian of a poor and a good conducting material which 
may give rise to industrial applications is not easier to 
deal with as we show later. 

2. METHOD Of SULUTJON 

Let us consider an N layered wall (Fig. I). Each 
layer possesses its own constant the~op~ysi~ prop- 

erties and thermal contact between the various layers 
is supposed to be perfect; the external faces are sub- 
mitted to statianary conditions of the third kind. We 
consider a transitory thermal regime. Owing to the 
linearity, the temperature c = Ti(xi, t) is the sum of 
the stationary solution S&T,) and of the homogeneous 
transitory solution Of = @(xi, t) which obeys the 
equation : 

The time scale r’ is here the time scale of the first layer 
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FIG. 1. Model of laminated binary comp&&. In all the 
succeeding numerical examples : I = copper, If = glass. 
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NOMENCLATURE 

a. b. c, d elements of the pattern transfer Greek symbols 
matrix a,,, a,(Z) n- 1 order Chebyche~s poly~omjai 

a, thermal difiitsivity of the second kind 
A” kth coefficient of the development on the /$, = hi/h’, , reduced thermal effusivity 

eigenbasis [l*,(p)] transfer matrix of the ith layer of a 
h’ thermal effusivity multilayered wall 
c, heat capacity [f,v( ,u)] transfer matrix of an N layered wall 
r:. (e,) thickness of the ith layer (reduced 601) =(a-&/2 

thickness) e -~((p,/pz)‘:‘-c(,,ilr,,’ z, 
e,> “+ reduced thicknesses of a homogenized Oi, O,(r,. 6) dim~nsioniess temperature (in 

wall the homogeneous problem) 

E& = ne, P1. Irk, & eigenvalue parameter, eigenvalues 
Eil = ne, 1’ parameter 
F,(xi) flux density (in the eigenvalue i”Y, V,W. ;x. X,V coefficients of the transfer 

problem) matrix of an N layered wall 

fr, thermal surface conductance T, time scale 
IA. I+, I- intervals of definition of the Z(p) (0, 0+ Qk eigenvalue parameter, 

function eigenvalues. 
.L’, (L) space scale (reduced space scale) 

R, thermal resistance of a layer 
[I$] thermal resistance matrix 

r!+ eigenvalue Subscripts 
&(.x,) stationary solution 

a 
layer indice 

t’, (t) time (reduced time) homogenized medium 
Ti, Ti(x,, t) dimensionless temperature in k, I eigenvalue indice 

the ith layer II number of patterns in a cyclic composite 
[7’j transfer matrix of the basic pattern N number of layers in a muIti~ayered 
x:. (x,) abscissa (reduced abscissa) composite 
XL(_u,). X:(x,) temperature (in the 0 homogenized medium (given 

eigenvalue problem), eigenfunction temperature case) 
Z(p) = JtracefT]. #J homogenized medium (given flux case), 

rz = e;‘/w,. 

Equation (1. ) possesses the general solution : 

Oj = X,(x,) exp (--j~?1), 0 < X, < e,, i = 1,. . . , N 

(2) 

with 

where 6, = hi/b; is the reduced thermal effusivity of 
the layer i and F&T,) is the flux density. 

By introducing the transfer matrix [&I)] of each 
layer we may write : 

with 

The temperature and the flux density are continuous 
at the interfaces, and for the overall wall we have : 

where [f,(p)], the transfer matrix of the wall, is the 
product : 

Let 

be the thermal resistance matrices of both external 
faces. 

By introducing the equilibrium temperatures 
.X,+ , = 0, X, = 0 ~homogeneo~s problem) of the 
ambient medium and the corresponding flux densities 
(which are equal to the flux densities crossing the 
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external faces) FN+ , and F,,, we obtain the matrix 
relation 

0 

[ 1 F = Ef+ll[~Nw[~II . 
IV+1 [I ; 0 

This system admits a nontrivial solution only if the 
superior off-diagonal coefficient of the above product 
of matrices is null. In a developed writing using equa- 
tion (4) the equation reads : 

-5Nw~I +IN(PC)I~Ihv+I +‘1‘m 

-Xlv(P)Plv+ I = 0. (5) 

The roots of this equation are the eigenvalues, pk. We 
notice that a temperature given problem (on both 
external faces) is obtained when hi and h,, , go to 
infinity and then equation (5) reduces to qN = 0. In 
the same way a flux given condition (h, or h,, , = 0) 

on one face and a given temperature condition on the 
other face give : lN = 0 when the flux is given at x, = 0 
or xN = 0 when the flux is given at xN = eN. The 
eigenfunction Xf(x,), i = 1,. . . , N is associated with 
the corresponding eigenvalue pLk. The eigenfunction 
basis is orthogonal-see Bouzidi and Duhamel [2] or 
Bouzidi [3], for example-and is used to develop the 
solution of the homogeneous problem : 

Oi(xi, t) = C AkXf(xi) exp (-&t). 
k 

The Ak coefficients are calculated by developing the 
initial given temperature field on the eigenbasis. 

The key of the technique is the numerical cal- 
culation of the eigenvalues. Experience shows that, as 
soon as the number of layers reaches four or five, 
there exists a risk of missing some roots if a classical 
root-finding method is used. This is in particular the 
case for a cyclic composite. For instance, Fig. 2 gives 
the look of the function tzn for a binary copper/glass 
composite with IZ = 20 repetitions of the basic binary 
pattern. The distribution of the zeros is surprising 
with a first interval IO, 0.08[ where the roots lay more 
or less regularly spaced and beyond, some intervals 
where they pile up. This astonishing structure of the 

FIG. 2. Characteristic function t2”(p) for a binary composite 
(20 patterns). Given flux condition on the left-hand side. 

eigenvalue spectrum was noticed by Bouzidi [3] and 
is partly the motivation of this paper. It shows that a 
reliable root-finding method is necessary but we have 
built earlier such a safety method [4]. 

3. TRANSFER MATRIX OF THE CYCLIC 

COMPOSITE-EIGENVALUE EQUATION 

Let us consider a multilayered wall which is the 
repetition of a given pattern II times. The pattern itself 
is the assembly of 2 or 3 or.. . layers with distinct 
physical properties. Its transfer matrix is written as : 

with det [7J = ad-bc = 1 (passive medium). We set : 

tr[Tj = a+d = 22(p) (6) 

and 

u-d = 26(p). (7) 

The overall transfer matrix [r,(p)] (with now N = 2n 
or 3n or.. .) is the nth power of [fl. The Hamilton- 
Cayley theorem permits us to write : 

PI” = %Pl+4m (8) 

where [Zj is the unit matrix and, 

cc,(Z) = 2zc$_, --tl,_z (84 

a; = -CL,_,. WI 

The recurrence is initialized by : 

t(, = 1 and LY* =22(p). (8~) 

We shall be able to calculate the four coefficients of 
the [an matrix, with the help of equation (8), as soon 
as the recurrence (8a-c) is solved. 

Let us suppose that there exists intervals ZA = 

[pi, P,,,I such as 

lZ(p)l < 1 whenpoZA. 

Then, in these intervals, the solution is the Cheby- 
cheff’s polynomial of the second kind. We recall that 
by setting 

Z(p) = cos e 

this polynomial reads 

sin (ne) 
K(P) = ~ sin 0 . 

We notice that in the neighbourhood of the zeros, & 
of Z(p), necessarily the Z, intervals exist. Outside 
the Z, intervals the ChebycheIT’s polynomial may be 
extended. By defining I+ and I- intervals such as : 

Z(,u)> 1 whenpaZ+ and 

Z(p) < -1 whenpEZ_ 

we easily show that, when ZI E I+, the extension can be 
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written as : 

sh(n0) 
%(Z) = T’ by setting Z(p) = chH. 

While. on the I intervals we have : 

sh(n0) 
LX,(Z) = (-I)“-- ’ shO. by setting Z(U) = -chU. 

We thus could always express x,? and formally cal- 
culate the [q” matrix coefficients. 

Owing to (8). the eigenvalue equation (5) now can 
gradient of mass fraction of vapour, we can then write : 

The first square brackets term represents the charac- 
teristic equation of the pattern when submitted to the 
same boundary conditions as the whole wall. It is only 
when the external thermal resistances vanish that the 
eigenvalues of the pattern are among the eigenvalues 
of the complete composite. that is to say. when the 
boundary conditions are first kind conditions. In that 
case, the characteristic equation (9) reduces to : 

sc,,(Z)b(Z) = 0. (10) 

In a more general way, the cyclic form of the medium 
is translated by the Chebycheff’s polynomials a,,(Z) 
and c(,_ , (Z). Although it is not the subject of the 
paper, one can deduce from the results of Appendix 
2 that the properties of these polynomials when 
IZ(p)I d 1 are responsible for the piling up of the 
eigenvalues near the roots of Z(p) as we observed in 
Fig. 2. 

4. STUDY OF THE FIRST EIGENVALUES, 

HOMOGENIZATION 

When the heat exchange of the composite with the 
external medium takes place through convection-or 
linearized radiation-the characteristic equation (5) 
depends on both surface conductances h, and iz*,+, 
whose values are entirely outside the cyclic nature of 
the medium. It is thus difficult to study this case in a 
general way. It is the reason why we concentrate our 
attention on problems with boundary conditions of 
first and second kind which are ‘purer’. 

The first roots are the prevailing eigenvalues at the 
end of the thermal transient regime : they control long- 
term behaviour of the composite. Any one feels. 
furthermore, that as n becomes large, more exactly 
as eJn becomes small compared to the overall thick- 
ness, the composite must behave as a homogeneous 
medium. 

4. I. Imposed temperature case 
As ,u goes to zero each individual transfer matrix 

of a multilayered wall goes to the thermal resistance 
matrix of the layer: 

Thus, whatever the number of layers of the pattern, 
we have 

Z(0) = itr[T] = 1 = Det [T]. 

Furthermore we show in Appendix 1 that 

dZ d’Z 

dl* ,,=t, 
= 0 and ~~~~~ 

dp’ ,j.-. o 
<o 

The first Z, kind interval is thus such that 

0 < p d /&a* with Z(p,,,,,) = - I. 

We showed (Appendix 2) that it contains (n - I) eigen- 
values pr which obey the equation : 

Z(p~)=cos(kn/n). k= 1.2....,(n-1) 

Let us see if there exists a homogeneous medium. 
the first cigenvalues of which are approximations of 
the first eigenvalues of the true composite. Necessarily 
these values verify the characteristic equation of a 
homogeneous medium submitted to fixed temperature 
conditions : 

sin (c0&) 
--- = 0 

4j 
or ~0~ = kn/E,,. k = 1,2. _. 

where E. is the adimensional thickness which is cal- 
culated with the same characteristic scale as that used 
for the actual composite. Thus E,, must satisfy the 
condition : 

(Uk + I% when k/t1 << I 

or 

Z(kzjE,) + cos (kn/n) when k/n K I. (1 I! 

Near zero, Z(UJ) may be developed in Taylor’s series : 

and by choosing EH such as 

(12) 

we may satisfy the condition (11) with an error of 
order (knjrz)‘. 

Let us consider the preceding copper/glass binary 
composite. We have : 

VI= ; ; L I 
where 
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a = cos(~(e,+e,))+~sin(~e,) sin (pe2), 
2 

b = - f 
[ 

sin(fi(e, +e2)) 
1 

lb-P1 - -----cos (pe,) sin (PeJ 82 1 , 
c = PA 

[ 
sin MeI +4) 

82-81 
- ~cos (per) sin (PeJ , 

d=cos(p(e,+eJ)-&sin(pe,)sin(/Le*) 

1 
I 

with 

Z(P) = ltr[Tl = (1 +a*) cos (p(e, +ez)) 

-2 cos (p(e, -e2)) 

where 

and 

a = t((P~/~2)“*-(~z/~,)“~) 

d2Z 

dW2 
= -[(l+.a’)(e, +e2)2-a2(e, -e2)*]. 

o=o 

We deduce : 

Ei = n’[(l +a*)(e, +e2)“-s2(e, -e2)*] = n2ei. 

(13) 

Remark : in the continuity of the preceding sections, 
the adimensional quantities are defined through the 
first layer reference scales (see Section 2), so as for the 
thicknesses. It is clear that this last scale, which is 
justified for pattern characterization, is not the best 
for the homogeneous medium reference scale. As we 
might expect the macroscopic adimensional thickness 
EB is thus n times the microscopic thickness es due to 
that choice. 

Figure 3 permits us to compare the first eigenvalues 
of the composite, which possesses n = 40 patterns, to 
those of the corresponding homogeneous medium (be 
curve).? One may see that beyond the 12th eigenvalue, 
the estimates are no longer valid. 

4.2. Imposedflux on one face, imposed temperature on 
the other face 

The characteristic equation (9) may be written : 

Za,(Z)-xa,_,(Z)+vha,(Z) = 0 (14) 

with v = 1 if the flux is fixed on the left-hand side 
(x, = 0) ; v = - 1 if the flux is fixed on the right-hand 
side (xN = eN). The first eigenvalues are obtained on 

t We drew bs = -sin (PE,) as a matter of fact instead of 
bs = -sin (&)/&?. 

FIG. 3. Comparison of the actual characteristic function 
am and of the homogenized wall characteristic function 

be(r) (40 patterns). Imposed temperature case. 

the same Z, interval as in the above section (see Appen- 
dix 2). Since ]Z] < 1, we have 

Zcr,(Z)-a,_,(Z) = cos (no) = T,(Z) (15) 

where T,(Z) is the Chebycheff’s polynomial of the 
first kind, which has also the property : 

an(Z)=:%. 

Equation (14) can be written as : 

T.(Z)+v; 2 = 0. (16) 

When p goes to zero, 6/n is of order O(p*/n) and 
dT,/dZ goes toward n2. Thus as soon as p2n is small, 
equation (16) may be approximated by 

T,(Z) = 0. (17) 

But the left-hand side term is also the first order Tay- 
lor’s development of T,[Z+v(Q)], the equation 

T, Z+v; =0 
( ) 

is thus a better estimate as soon as $n is small. The 
roots of equation (18) are such that 

6 
Z(PJ+v-(P,) = ax n 

k=O,...,k,,, withk,,,<(n-1). (19) 

In the same way as in the above section we may find an 
adimensional thickness E@ such that the eigenvalues of 
a homogeneous medium submitted to a fixed tem- 
perature condition on one side and a tixed flux con- 
dition on the other approach the roots of equation 
(18). For the binary composite which supports the 
illustrations throughout this article, we find : 
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6 = dl +s’)‘~‘[cos (,Li(el l tc,))-cos (p(e, -p))] 

and then 

We notice that the microscopic reduced thicknesses 
P,,, and et, are related to each other by : 

The microscopic reduced thickness of the fixed tem- 
perature problem. efl, is also suitable for the imposed 

tlux problem, as we might expect since equation (17) 
is an approximation of the equation (16) it is the 
thickness when n go to infinity. 

In Table 1 we may compare the first eigenvalues. 
I’,!, of the binary copper/glass composite submitted to 
an imposed flux at .y2,, = eL,, (V = - I), to the roots of 
both equations : 

cos (CUE&) = 0 and cos (SZQ,) = 0. 

The composite has 40 patterns. The first Q, values are 
actually closer to rk than are the wlr values. For li = 20 
neither estimate suits : R,, is as a matter of fact closer 
to rZ, than it is to rZl,. 

5. PHYSICAL INTERPRETATIONS 

The physical characteristics of the equivalent homo- 
geneous medium may be calculated. When choosing 
the characteristic scales of the first layer of the pattern, 
a homogeneous medium of thickness f.’ and diffu- 
sivity a’ have the reduced thickness 

Thus, in the case of a binary composite of actual 
thickness L’ = n(e; +e>) and reduced thickness & 
(equation (20)). we obtain from equation (21) : 

a’= ~~--- 
{e’, +P;)’ 

with 

(22) 

Table 1. Comparison of the first eigenvalues : r,, actual com- 
posite, a,. homogenized medium (n = 40 patterns), q, 

homogenized medium (n -+ co) 

A- l 2 5 10 20 

<Ok x IO’ 1.43794 4.3138 12.941 27.32 I 56.079 
!&x 109 1.45097 4.3529 13.006 27.568 56.588 
r; x 103 1.45087 4.3514 13.023 27.232 53.457 

I’ = 0: first kind problem 

i’ = 1 : fixed flux on the left-hand side 

\‘Z -I: tixed flux on the right-hand side. 

When V/E -+ 0, we find the same formula as Yamachita 
et nt. [5]. with a diffusivjty which is indepeIident of 
the chosen boundary conditions. In that case the cal- 
culated diffusivity preserves the thermal resistance-. 
i.e. IZ(~; In’, +e>/i’,)Pand the heat capacity----i.e. 
n(p’,c’,e’, +/jicie’,)-of the actual wall as advocated 
in refs. [(i. 71. 

The corresponding internal time scale is : 

z;, = (P’, +r’)‘,‘f/’ 

which may be written as : 

when v/n + 0. (23) 

By introducing the thermal resistance R and the heat 
capacity, C, we know, Gosse [Xl, that there arc two 
groups which characterize the diffusivity on a homo- 
geneous medium : RC = T'. the internal time scale and 
R/C = 1 lb” which play a role in the surface time scale. 
In the same spirit, letting : 

and 

T’,? = R,C, 

we may write the above time scale : 

T; = r', +z':-t-(z',t~)'~~[(7~,,/t', 2)' : 

-~-(T',,~/T;~,)"']. (24) 

In a cyclic composite medium. the properties con- 
trolling the surface diffusion (that is to say the cross- 
time scales z’,:~ and t$,) give a contribution to the 
internal time scale as expected. 

6. COMPARISON BETWEEN THE 

HOMOGENEOUS AND THE ACTUAL MEDIUM 

We give the results of this comparison for the case 
of a given flux on one face ; we saw that this problem 
was more difficult to homogenize than the imposed 
temperature case. 

Let us consider walls of physical thickness E’ sub- 
mitted to a given tem~rature at s, = 0 (r(O, t) = 1) 

and to a given flux (we chose a null flux condition) at 
X& = c?,. We present in Fig. 4 the temperature value 
at .x1,1 = eZ,, as a function of the pattern repetition 
number (the pattern is the previous two layered 
copper/glass wail) and for different instants, knowing 
that, at the initial time, the whole wall is at zero 
temperature. There is no single meaningful time scale 
in these walls because as the number of patterns varies. 
the proper time scale of a given fixed n wall changes. 
Considering arbitrarily a thickness E' of 10 cm. the 
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FIG. 4. Comparison of the actual wall and of the homo- 
genized wall : temperature of the right-hand face as a func- 
tion of the pattern repetition number. Null flux condition on 

the right-hand side. 

time scale of the equivalent homogeneous medium, in 
the sense of Section 4.2, varies from 3.8 h when the 
wall has two patterns to 5.9 h when the wall is infinitely 
layered (equation (23)). For this reason, we do not 
use a reduced time when drawing Fig. 4 or 5. 

We notice that for 50 repetitions, the multilayered 
wall may be classed as a homogenized asymptotic 
medium (v/n + 0 in equation (22)) since the difference 
between the true temperature (continuous line) and 
the temperature of the homogeneous infinitely layered 
medium (asymptotic value) is less than 0.7% of the 
full scale whatever the considered instant is. At the 
opposite when we consider the wall made of two pat- 
terns the gap between the true temperature and the 

- Actual composite 
---.--- Homogenized medium 
- - Homogenized asymptoti.3 medium 

t'(hours) 

FIG. 5. Comparison of the actual wall and of the homo- 
genized walls. 

asymptote may exceed 20%, which is not a surprising 
observation. 

When using the thermophysical homogeneous 
characteristics which suit the imposed flux studied 
problem (equation (22) with v = - l), we see that the 
corrective term which takes into account the finite 
number of layers produces a remarkable improve- 
ment. The temperature results appear in dotted lines. 
Even when the wall has only two patterns, the error 
in temperature forecast is always less than 3% (full 
scale reference), whatever the time in the studied 
range. Thanks to this corrective term, the medium 
becomes homogenizable from 10 repetitions (for 
t’ = 0.5 h and beyond) ; it may even be correctly 
homogenized from 3 repetitions for all the instants 
more than 1 h (i.e. 22% of the proper time scale of 
the 3 pattern wall). 

Figure 5, which shows the rise of the temperature 
during the transitory regime at the x2,, = e,, face of 
the composite, confirms the interest of the corrective 
term when the number of pattern repetitions is finite. 
It is only for the short-term behaviour-i.e. for 
instants less than 15% of the time-scale-and for a 
medium which is made of only 2 patterns-that this 
corrective term loses its efficiency because of errors 
higher than 4% (full scale reference). One knows that, 
for these short times, the construction of the solution 
requires a great number of terms of the eigenbasis 
development ; as a matter of fact less than n/2 eigen- 
values of the true problem are correctly approximated 
through homogenization (see Section 4) of an n 
pattern wall ; thus one might expect the impossibility 
of short-term description of media which possess 
few patterns. 

7. CONCLUSION 

The study of the eigenvalue equations stemming 
from diffusion problems in cyclic multilayered walls 
permits us to bring forward common features of the 
eigenvalue spectrum of these media. We showed that 
the equation is made explicit with the help of Cheby- 
chelf’s polynomials. The properties of these poly- 
nomials induce common characteristics such as the 
grouping of eigenvalues round the zeros of the trace 
of the transfer matrix of the basic pattern. 

The first set of eigenvalues plays a fundamental role 
in the long-term thermal behaviour of the composite. 
By studying this first set, we showed that there exists 
a homogeneous medium, the first eigenvalues of which 
approach those of the actual composite and we pro- 
posed several approximations of the physical charac- 
teristics of this medium ; one of these approximated 
properties takes into account the finite number of 
patterns. 

The example of a binary composite permits us to 
show how the time scale of the homogenized medium 
brings into play not only both internal time scales of 
the constitutive layers but also two symmetrical cross- 
scales which characterize the interface diffusion. The 
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comparison of temperature calculation results show 

that it is possible to correctly homogenize cyclic multi- 

layered walls which possess a small number (3-4) of 

patterns thanks to the corrective term which takes 

into account the finite number of patterns. 
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APPENDIX 1 

Let us consider a pattern ofp different layers. Its transfer 
matrix [fl is the product of the transfer matrices [y,(p)] of 
layers (see Section 2. I). Each coefficient of the [n(p)] matrix 
is even referring to p : the coefficients of the product are thus 
even and so is every linear function of these coefficients : so 
is trace [r] in particular. 

Thus 

d% 

dn ,/=,I 
= 0. 

Near n = 0, [y,( p(,] takes the form : 

where [R,] is the thermal resistance matrix of the layer and 
where 

LU,l = ’ L -e,iW, 
- 2p,/e, 1 1 

Near p = 0, we have thus : 

(Al) 

The coefficients of the first diagonal of the product matrix 
which appears in the second term of (Al) take the form : 

for the first coefficient. 

for the second coathcient 

We deduce : 

which shows that 

APPENDIX 2 

We recall a result of Rayleigh’s theorem [9] : 

If the eigenvalues pk of a given boundary linear problem are 
arranged in ascending order of magnitude. the eigenvalues 
2, of the problem in which one supplementary condition- 
here a given temperature at an interface-is imposed upon 
the medium are such that. 

I., , ,< fir < I, k = 1 1 2. 

The theorem was originally proved for linear vibration prob- 
lems but it is easy to show [4] that the Sturn-Liouville 
problem arising from the thermal diffusion in layered com- 
posites is a special type of free vibration problems. 

Let us consider a cyclic composite wall and a given tem- 
perature problem for this wall. When all the interfaces 
between then basic patterns are at a fixed temperature (con- 
strained state), each eigenvalue I, of the pattern possesses a 
multiplicity of order n. At each time one interface constraint 
is removed. the multiplicity order diminishes by one unit 
while one novel eigenvalue of magnitude lower than I, 
appears on the p-axis. When all the interface constraints 
are removed. the eigenvalue of order li fn - 1 lies at the i., 
position---it is a single root of the final eigenvalue equation-- 
though there are n - 1 other roots lying between I., , and i,, 
in general. 

When k = 1. there are ,I- I eigenvalues between 0 and L, 
The nth eigenvalue is n,, = I,, knowing that i, , is the first 
eigenvalue of the pattern when submitted to imposed tem- 
peratures on both its faces. We showed. in Section 3. that. 
for the considered case. the eigenvalue equation can be 
written as : 

a,(Z)h(p) = 0. 

The roots of b(p) are the eigenvalues, i,, of the pattern (see 
equation (5) when the thermal resistances I/h, and I/by, , 
vanish). The other roots which are solutions of 

r,(Z) = 0 

appear when ]Z] < 1 .t They are the roots of the Chebycheff’s 
polynomial : 

Z(n,)=cos(Irc/n) I= 1.2,...(n-1) 

In particular, there are n- 1 eigenvalues of this kind between 
0 and i., The first I, interval : 

[0,&J with P,,, < iI 

contains the first n- 1 eigenvalues. 

But, t The equation sh(nQ)/sh(@ = 0 has no solution. 
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Let us consider now a second kind problem. We saw in 
Section 2 that, by introducing two fictitious layers, with a 
constant transfer matrix (the thermal resistance matrices [R J 
and [RN+ ,I) at both sides of a multilayered wall, every prob- 
lem is solved as a first kind problem : the eigenvaiue equation 
is obtained by setting at zero the hrst off-diagonal coefficient 
of the overall transfer matrix. We may thus extend the above 
reasoning to second kind problems. 

where the &s have the previous properties; this leads to : 

0 <r, Q p, .I. 

For instance, if the temperature is given on the left-hand ‘I%e tirst Z, interval [0, jq,,,,] with ttmsx < 1, contains at least 
side of the wall and the flux is given on the other side, the first n- 1 eigenvalues. There is one eigenvalue between 
we conclude that the eigenvalues pk of the problem which pL,_, and A,. We cannot easily derive a conclusion on the 
possesses the last constraint X,,(+) = O-this is the pre- membership of the nth root of the first Z, or I- interval 
viously studied first kind probIem-and the calculated eigen- because the eigenvalue equation of second kind problems is 
values r, (solutions of a problem in which the last constraint not so easily tractable as the first kind eigenvalue equation. 
is removed) are such that: Nevertheless a discussion should be possible. 


